Repetitive hyperthermia attenuates progression of left ventricular hypertrophy and increases telomerase activity in hypertensive rats.

نویسندگان

  • Jun-ichi Oyama
  • Toyoki Maeda
  • Makoto Sasaki
  • Yoshihiro Higuchi
  • Koichi Node
  • Naoki Makino
چکیده

We investigated the hypothesis that repetitive hyperthermia (RHT) attenuates the progression of cardiac hypertrophy and delays the transition from hypertensive cardiomyopathy to heart failure in Dahl salt-sensitive (DS) hypertensive rats. Six-week-old DS rats were divided into the following five groups: a normal-salt diet (0.4% NaCl) (NS group), a normal-salt diet plus RHT by daily immersion for 10 min in 40°C water (NS+RHT group), a high-salt diet (8% NaCl) (HS group), a high-salt diet (8% NaCl) plus RHT (HS+RHT group), and high-salt diet (8% NaCl) plus RHT with 17-DMAG (HSP90 inhibitor) administration (HS+RHT+17-DMAG group). All rats were killed at 10 wk. Cardiac hypertrophy and fibrosis were noted in the HS group, whereas RHT attenuated salt-induced cardiac hypertrophy, myocardial and perivascular fibrosis, and blood pressure elevation. The phosphorylated endothelial nitric oxide synthase (eNOS) and Akt were decreased in the HS group compared with the NS group, but these changes were not observed in the HS+RHT group. The levels of HSP60, 70, and 90 were elevated by RHT. Moreover, the increased levels of iNOS, nitrotyrosine, Toll-like receptor-4, BNP, PTX3, and TBARS in the HS group were inhibited by RHT. Telomeric DNA length, telomerase activity, and telomere reverse transcriptase (TERT) were reduced in the HS group; however, these changes were partially prevented by hyperthermia. In conclusion, RHT attenuates the development of cardiac hypertrophy and fibrosis and preserves telomerase, TERT activity and the length of telomere DNA in salt-induced hypertensive rats through activation of eNOS and induction of HSPs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of Carvacrol on Catalase Activity and mRNA Expression Following Left Ventricular Hypertrophy in Rats

Background and Aims: Cardiac hypertrophy is a compensatory augmentation response of the heart due to pressure overload that can lead to heart failure. Carvacrol is considered as the major compound of many plants, that possesses strong antioxidant properties. The present study aimed to evaluate effect of carvacrol on catalase activity and mRNA expression following left ventricular hypertrop...

متن کامل

Role of oxidative stress in the aortic constriction-induced ventricular hypertrophy in rat

Introduction:Severe abdominal aortic constriction above the renal arteries induces arterial hypertension above the stenotic site that is the cause of cardiac hypertrophy. Previous studies have shown that high blood pressure induces myocardial oxidative stress with conflicting results. In the present study, we assessed the effects of acute hypertension on the myocardial oxidative stress an...

متن کامل

Resveratrol Suppresses Cardiac Renin Angiotensin System in the Late Phase of Left Ventricular Hypertrophy

Background and objectives: Resveratrol(3,5,4′-trihydroxy-trans-stilbene) is a natural polyphenole phytoalexin which exerts potential cardioprotective effects, but the cellular and molecular mechanisms responsible for these effects are still unknown. Cardiac renin angiotensin system (RAS) over-activation plays an important role in pathogenesis of left ventricula...

متن کامل

PREMATURE CARDIAC SENESCENCE IN DahlS.Z-Leprfa/Leprfa RATS AS A NEW ANIMAL MODEL OF METABOLIC SYNDROME

Aging is accelerated by metabolic and cardiovascular diseases, and the risk of these diseases increases with age. Obesity is an important risk factor for many age-related diseases and is linked to reduced telomere length in white blood cells. We investigated whether cardiac senescence might be enhanced in DahlS.Z-Lepr(fa)/Lepr(fa) (DS/obese) rats, which we recently established as a new animal m...

متن کامل

Angiotensin-(1-7) attenuates hypertension in exercise-trained renal hypertensive rats.

Angiotensin-(1-7) [ANG-(1-7)] plays a counterregulatory role to angiotensin II in the renin-angiotensin system. In trained spontaneous hypertensive rats, Mas expression and protein are upregulated in ventricular tissue. Therefore, we examined the role of ANG-(1-7) on cardiac hemodynamics, cardiac functions, and cardiac remodeling in trained two-kidney one-clip hypertensive (2K1C) rats. For this...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Heart and circulatory physiology

دوره 302 10  شماره 

صفحات  -

تاریخ انتشار 2012